Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Intervalo de año de publicación
1.
Front Plant Sci ; 13: 868027, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712599

RESUMEN

The prokaryote-derived Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/Cas mediated gene editing tools have revolutionized our ability to precisely manipulate specific genome sequences in plants and animals. The simplicity, precision, affordability, and robustness of this technology have allowed a myriad of genomes from a diverse group of plant species to be successfully edited. Even though CRISPR/Cas, base editing, and prime editing technologies have been rapidly adopted and implemented in plants, their editing efficiency rate and specificity varies greatly. In this review, we provide a critical overview of the recent advances in CRISPR/Cas9-derived technologies and their implications on enhancing editing efficiency. We highlight the major efforts of engineering Cas9, Cas12a, Cas12b, and Cas12f proteins aiming to improve their efficiencies. We also provide a perspective on the global future of agriculturally based products using DNA-free CRISPR/Cas techniques. The improvement of CRISPR-based technologies efficiency will enable the implementation of genome editing tools in a variety of crop plants, as well as accelerate progress in basic research and molecular breeding.

2.
Plant Cell Rep ; 41(4): 979-993, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35226115

RESUMEN

KEY MESSAGE: Lower ethylene production in sugarcane results in plants with higher stature, expression of growth-promoting genes, higher photosynthetic rate, and increased antioxidant compounds. The hormone ethylene is involved in critical processes in sugarcane, such as the growth and accumulation of sucrose. The lack of mutants for ethylene biosynthesis or signaling genes makes it difficult to understand the role of this phytohormone throughout sugarcane development. This study aimed to evaluate the physiology and development of sugarcane plants with low ethylene production. To achieve this goal, we used RNA interference to silence three genes, ScACS1, ScACS2, and ScACS3, encoding 1-aminocyclopropane-1-carboxylic acid synthases (ACS), responsible for a limiting step of the ethylene biosynthesis pathway. Sugarcane plants with reduced ethylene levels presented increased growth, faster germination of lateral gems, and activation of non-enzymatic antioxidant mechanisms. We observed an augmentation in the expression of ScACO5, which encodes the final enzyme regulating ethylene biosynthesis, and ScERF1, encoding a transcription factor, linked to the ethylene response. The increase in plant height was correlated with higher expression of ScPIF3, ScPIF4, and ScPIF5, which encode for transcription factors related to growth induction. Interestingly, there was also an increase in the expression of the ScGAI gene, which encodes a DELLA protein, a growth repressor. The final content of sucrose in the stems was not affected by the low levels of ethylene, although the rate of CO2 assimilation was reduced. This study reports for the first time the impacts of low endogenous production of ethylene in sugarcane and provides helpful insights on the molecular mechanisms behind ethylene responses.


Asunto(s)
Saccharum , Antioxidantes/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Saccharum/genética , Saccharum/metabolismo , Sacarosa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266228

RESUMEN

The ability to expand crop plantations without irrigation is a major goal to increase agriculture sustainability. To achieve this end, we need to understand the mechanisms that govern plant growth responses under drought conditions. In this study, we combined physiological, transcriptomic, and genomic data to provide a comprehensive picture of drought and recovery responses in the leaves and roots of sugarcane. Transcriptomic profiling using oligoarrays and RNA-seq identified 2898 (out of 21,902) and 46,062 (out of 373,869) transcripts as differentially expressed, respectively. Co-expression analysis revealed modules enriched in photosynthesis, small molecule metabolism, alpha-amino acid metabolism, trehalose biosynthesis, serine family amino acid metabolism, and carbohydrate transport. Together, our findings reveal that carbohydrate metabolism is coordinated with the degradation of amino acids to provide carbon skeletons to the tricarboxylic acid cycle. This coordination may help to maintain energetic balance during drought stress adaptation, facilitating recovery after the stress is alleviated. Our results shed light on candidate regulatory elements and pave the way to biotechnology strategies towards the development of drought-tolerant sugarcane plants.


Asunto(s)
Aminoácidos/metabolismo , Metabolismo de los Hidratos de Carbono , Sequías , Metabolismo Energético , Saccharum/fisiología , Adaptación Fisiológica , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Redes y Vías Metabólicas , Transcriptoma
4.
Front Plant Sci ; 11: 1252, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922424

RESUMEN

Molecular biotechnology has made it possible to explore the potential of plants for different purposes. The 3' regulatory regions have a great diversity of cis-regulatory elements directly involved in polyadenylation, stability, transport and mRNA translation, essential to achieve the desired levels of gene expression. A complex interaction between the cleavage and polyadenylation molecular complex and cis-elements determine the polyadenylation site, which may result in the choice of non-canonical sites, resulting in alternative polyadenylation events, involved in the regulation of more than 80% of the genes expressed in plants. In addition, after transcription, a wide array of RNA-binding proteins interacts with cis-acting elements located mainly in the 3' untranslated region, determining the fate of mRNAs in eukaryotic cells. Although a small number of 3' regulatory regions have been identified and validated so far, many studies have shown that plant 3' regulatory regions have a higher potential to regulate gene expression in plants compared to widely used 3' regulatory regions, such as NOS and OCS from Agrobacterium tumefaciens and 35S from cauliflower mosaic virus. In this review, we discuss the role of 3' regulatory regions in gene expression, and the superior potential that plant 3' regulatory regions have compared to NOS, OCS and 35S 3' regulatory regions.

5.
Genet Mol Biol ; 43(1): e20180208, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32232316

RESUMEN

Hemicellulose and cellulose are essential polysaccharides for plant development and major components of cell wall. They are also an important energy source for the production of ethanol from plant biomass, but their conversion to fermentable sugars is hindered by the complex structure of cell walls. The glucuronic acid substitution of xylan (GUX) enzymes attach glucuronic acid to xylan, a major component of hemicellulose, decreasing the efficiency of enzymes used for ethanol production. Since loss-of-function gux mutants of Arabidopsis thaliana enhance enzyme accessibility and cell wall digestion without adverse phenotypes, GUX genes are potential targets for genetically improving energy crops. However, comprehensive identification of GUX in important species and their evolutionary history are largely lacking. Here, we identified putative GUX proteins using hidden Markov model searches with the GT8 domain and a GUX-specific motif, and inferred the phylogenetic relationship of 18 species with Maximum likelihood and Bayesian approaches. Each species presented a variable number of GUX, and their evolution can be explained by a mixture of divergent, concerted and birth-and-death evolutionary models. This is the first broad insight into the evolution of GUX gene family in plants and will potentially guide genetic and functional studies in species used for biofuel production.

6.
Front Plant Sci ; 10: 1105, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31620147

RESUMEN

Resistance to drought stress is fundamental to plant survival and development. Abscisic acid (ABA) is one of the major hormones involved in different types of abiotic and biotic stress responses. ABA intracellular signaling has been extensively explored in Arabidopsis thaliana and occurs via a phosphorylation cascade mediated by three related protein kinases, denominated SnRK2s (SNF1-related protein kinases). However, the role of ABA signaling and the biochemistry of SnRK2 in crop plants remains underexplored. Considering the importance of the ABA hormone in abiotic stress tolerance, here we investigated the regulatory mechanism of sugarcane SnRK2s-known as stress/ABA-activated protein kinases (SAPKs). The crystal structure of ScSAPK10 revealed the characteristic SnRK2 family architecture, in which the regulatory SnRK2 box interacts with the kinase domain αC helix. To study sugarcane SnRK2 regulation, we produced a series of mutants for the protein regulatory domains SnRK2 box and ABA box. Mutations in ScSAPK8 SnRK2 box aimed at perturbing its interaction with the protein kinase domain reduced protein kinase activity in vitro. On the other hand, mutations to ScSAPK ABA box did not impact protein kinase activity but did alter the protein autophosphorylation pattern. Taken together, our results demonstrate that both SnRK2 and ABA boxes might play a role in sugarcane SnRK2 function.

7.
Ann Bot ; 124(4): 691-700, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31125059

RESUMEN

BACKGROUND AND AIMS: Improving drought adaptation is more pressing for crops such as sugarcane, rice, wheat and maize, given the high dependence of these crops on irrigation. One option for enhancing adaptation to water limitation in plants is by transgenic approaches. An increasing number of genes that are associated with mechanisms used by plants to cope with water scarcity have been discovered. Genes encoding proteins with unknown functions comprise a relevant fraction of the genes that are modulated by drought. We characterized a gene in response to environmental stresses to gain insight into the unknown fraction of the sugarcane genome. Scdr2 (Sugarcane drought-responsive 2) encodes a small protein and shares highly conserved sequences within monocots, dicots, algae and fungi. METHODS: Plants overexpressing the Scdr2 sugarcane gene were examined in response to salinity and drought. Measurements of the gas exchange parameters, germination rate, water content, dry mass and oxidative damage were performed. Seeds as well as juvenile plants were used to explore the resilience level of the transgenic plants when compared with wild-type plants. KEY RESULTS: Overexpression of Scdr2 enhanced germination rates in tobacco seeds under drought and salinity conditions. Juvenile transgenic plants overexpressing Scdr2 and subjected to drought and salinity stresses showed higher photosynthesis levels, internal CO2 concentration and stomatal conductance, reduced accumulation of hydrogen peroxide in the leaves, no penalty for photosystem II and faster recovery after submission to both stress conditions. Respiration was not strongly affected by both stresses in the Scdr2 transgenic plants, whereas wild-type plants exhibited increased respiration rates. CONCLUSIONS: Scdr2 is involved in the response mechanism to abiotic stresses. Higher levels of Scdr2 enhanced resilience to salinity and drought, and this protection correlated with reduced oxidative damage. Scdr2 confers, at the physiological level, advantages to climate limitations. Therefore, Scdr2 is a potential target for improving sugarcane resilience to abiotic stress.


Asunto(s)
Sequías , Saccharum , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Salinidad , Estrés Fisiológico
8.
Int J Mol Sci ; 20(2)2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650539

RESUMEN

Phytohormones are natural chemical messengers that play critical roles in the regulation of plant growth and development as well as responses to biotic and abiotic stress factors, maintaining plant homeostasis, and allowing adaptation to environmental changes. The discovery of a new class of phytohormones, the brassinosteroids (BRs), almost 40 years ago opened a new era for the studies of plant growth and development and introduced new perspectives in the regulation of agronomic traits through their use in agriculture. BRs are a group of hormones with significant growth regulatory activity that act independently and in conjunction with other phytohormones to control different BR-regulated activities. Genetic and molecular research has increased our understanding of how BRs and their cross-talk with other phytohormones control several physiological and developmental processes. The present article provides an overview of BRs' discovery as well as recent findings on their interactions with other phytohormones at the transcriptional and post-transcriptional levels, in addition to clarifying how their network works to modulate plant growth, development, and responses to biotic and abiotic stresses.


Asunto(s)
Adaptación Fisiológica , Brasinoesteroides/metabolismo , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/metabolismo , Estrés Fisiológico , Brasinoesteroides/química , Reguladores del Crecimiento de las Plantas/química , Transducción de Señal
9.
AMB Express ; 8(1): 178, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30382415

RESUMEN

The glycoprotein APA (Alanine- and Proline-rich Antigen, a 45/47 kDa antigen complex, Rv1860) is considered as a major immunodominant antigen secreted by M. tuberculosis. This antigen has proved to be highly immunogenic in experimental models and humans, presenting a significant potential for further development of a new vaccine for tuberculosis. Glycosylation plays a key role in the immunogenicity of the APA protein. Because plants are known to promote post-translational modification such as glycosylation and to be one of the most economic and safe hosts for recombinant protein expression, we have over expressed the APA protein in transgenic tobacco plants aiming to produce a glycosylated version of the protein. Seeds are known to be a well-suited organ to accumulate recombinant proteins, due to low protease activity and higher protein stability. We used a seed-specific promoter from sorghum, a signal peptide to target the protein to the endoplasmic reticulum and ultimately in the protein storage vacuoles. We show that the recombinant protein accumulated in the seeds had similar isoelectric point and molecular weight compared with the native protein. These findings demonstrate the ability of tobacco plants to produce glycosylated APA protein, opening the way for the development of secure, effective and versatile vaccines or therapeutic proteins against tuberculosis.

10.
Genet Mol Biol ; 41(2): 450-454, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30088611

RESUMEN

The successful development of genetically engineered monocots using Agrobacterium-mediated transformation has created an increasing demand for compatible vectors. We have developed a new expression vector, pGVG, for efficient transformation and expression of different constructs for gene overexpression and silencing in sugarcane. The pCAMBIA2300 binary vector was modified by adding Gateway recombination sites for fast gene transfer between vectors and the maize polyubiquitin promoter Ubi-1 (ZmUbi1), which is known to drive high gene expression levels in monocots. Transformation efficiency using the pGVG vector reached up to 14 transgenic events per gram of transformed callus. Transgenic plants expressing the ß-glucuronidase (GUS) reporter gene from pGVG showed high levels of GUS activity. qRT-PCR evaluations demonstrated success for both overexpression and hairpin-based silencing cassettes. Therefore, pGVG is suitable for plant transformation and subsequent applications for high-throughput production of stable transgenic sugarcane. The use of an expression cassette based on the ZmUbi1 promoter opens the possibility of using pGVG in other monocot species.

11.
J Exp Bot ; 69(16): 3823-3837, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29767776

RESUMEN

Sugarcane contributes more than 70% of sugar production and is the second largest feedstock for ethanol production globally. Since sugar accumulates in sugarcane culms, culm biomass and sucrose content are the most commercially important traits. Despite extensive breeding, progress in both cane yield and sugar content remains very slow in most countries. We hypothesize that manipulating the genetic elements controlling culm growth will alter source-sink regulation and help break down the yield barriers. In this study, we investigate the role of sugarcane ScGAI, an ortholog of SLR1/D8/RHT1/GAI, on culm development and source-sink regulation through a combination of molecular techniques and transgenic strategies. We show that ScGAI is a key molecular regulator of culm growth and development. Changing ScGAI activity created substantial culm growth and carbon allocation changes for structural molecules and storage. ScGAI regulates spatio-temporal growth of sugarcane culm and leaf by interacting with ScPIF3/PIF4 and ethylene signaling elements ScEIN3/ScEIL1, and its action appears to be regulated by SUMOylation in leaf but not in the culm. Collectively, the remarkable culm growth variation observed suggests that ScGAI could be used as an effective molecular breeding target for breaking the slow yield gain in sugarcane.


Asunto(s)
Genes de Plantas , Saccharum/crecimiento & desarrollo , Saccharum/genética , Secuencia de Aminoácidos , Biomasa , Expresión Génica , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Saccharum/metabolismo , Homología de Secuencia de Aminoácido , Sacarosa/metabolismo , Sumoilación
12.
J Exp Bot ; 69(10): 2511-2525, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29514290

RESUMEN

Ethylene is a phytohormone involved in the regulation of several aspects of plant development and in responses to biotic and abiotic stress. The effects of exogenous application of ethylene to sugarcane plants are well characterized as growth inhibition of immature internodes and stimulation of sucrose accumulation. However, the molecular network underlying the control of ethylene biosynthesis in sugarcane remains largely unknown. The chemical reaction catalyzed by 1-aminocyclopropane-1-carboxylic acid synthase (ACS) is an important rate-limiting step that regulates ethylene production in plants. In this work, using a yeast one-hybrid approach, we identified three basic helix-loop-helix (bHLH) transcription factors, homologs of Arabidopsis FBH (FLOWERING BHLH), that bind to the promoter of ScACS2 (Sugarcane ACS2), a sugarcane type 3 ACS isozyme gene. Protein-protein interaction assays showed that sugarcane FBH1 (ScFBH1), ScFBH2, and ScFBH3 form homo- and heterodimers in the nucleus. Gene expression analysis revealed that ScFBHs and ScACS2 transcripts are more abundant in maturing internodes during afternoon and night. In addition, Arabidopsis functional analysis demonstrated that FBH controls ethylene production by regulating transcript levels of ACS7, a homolog of ScACS2. These results indicate that ScFBHs transcriptionally regulate ethylene biosynthesis in maturing internodes of sugarcane.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Liasas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Saccharum/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Isoenzimas/metabolismo , Liasas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Saccharum/enzimología , Saccharum/metabolismo
13.
PLoS One ; 13(3): e0193667, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29494650

RESUMEN

UDP-glucose pyrophosphorylase (UGPase) is found in all organisms and catalyses the formation of UDP-glucose. In sugarcane, UDP-glucose is a branch-point in the carbon channelling into other carbohydrates, such as sucrose and cellulose, which are the major factors for sugarcane productivity. In most plants, UGPase has been described to be enzymatically active in the monomeric form, while in human and yeast, homo-octamers represent the active form of the protein. Here, we present the crystal structure of UGPase from sugarcane (ScUGPase-1) at resolution of 2.0 Å. The crystals of ScUGPase-1 reveal the presence of two molecules in the asymmetric unit and the multi-angle light scattering analysis shows that ScUGPase-1 forms a mixture of species ranging from monomers to larger oligomers in solution, suggesting similarities with the orthologs from yeast and human.


Asunto(s)
Saccharum/enzimología , UTP-Glucosa-1-Fosfato Uridililtransferasa/química , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformación Proteica , Multimerización de Proteína , Saccharum/química , Saccharum/genética , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo
14.
Sci Rep ; 8(1): 2327, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29396510

RESUMEN

Nitrogen (N) is a major component of the photosynthetic apparatus and is widely used as a fertilizer in crops. However, to the best of our knowledge, the dynamic of photosynthesis establishment due to differential N supply in the bioenergy crop sugarcane has not been reported to date. To address this question, we evaluated physiological and metabolic alterations along the sugarcane leaf in two contrasting genotypes, responsive (R) and nonresponsive (NR), grown under high- and low-N conditions. We found that the N supply and the responsiveness of the genotype determined the degree of senescence, the carboxylation process mediated by phosphoenolpyruvate carboxylase (PEPcase) and differential accumulation of soluble sugars. The metabolite profiles indicated that the NR genotype had a higher respiration rate in the youngest tissues after exposure to high N. We observed elevated levels of metabolites related to photosynthesis in almost all leaf segments from the R genotype under high-N conditions, suggesting that N supply and the ability to respond to N influenced photosynthesis. Therefore, we observed that N influence on photosynthesis and other pathways is dependent on the genotype and the leaf region.


Asunto(s)
Nitrógeno/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Saccharum/metabolismo , Respiración de la Célula , Genotipo , Hojas de la Planta/crecimiento & desarrollo , Saccharum/genética , Saccharum/crecimiento & desarrollo
15.
AMB Express, v. 8, 178, 2018
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2600

RESUMEN

The glycoprotein APA (Alanine- and Proline-rich Antigen, a 45/47 kDa antigen complex, Rv1860) is considered as a major immunodominant antigen secreted by M. tuberculosis. This antigen has proved to be highly immunogenic in experimental models and humans, presenting a significant potential for further development of a new vaccine for tuberculosis. Glycosylation plays a key role in the immunogenicity of the APA protein. Because plants are known to promote post-translational modification such as glycosylation and to be one of the most economic and safe hosts for recombinant protein expression, we have over expressed the APA protein in transgenic tobacco plants aiming to produce a glycosylated version of the protein. Seeds are known to be a well-suited organ to accumulate recombinant proteins, due to low protease activity and higher protein stability. We used a seed-specific promoter from sorghum, a signal peptide to target the protein to the endoplasmic reticulum and ultimately in the protein storage vacuoles. We show that the recombinant protein accumulated in the seeds had similar isoelectric point and molecular weight compared with the native protein. These findings demonstrate the ability of tobacco plants to produce glycosylated APA protein, opening the way for the development of secure, effective and versatile vaccines or therapeutic proteins against tuberculosis.

16.
AMB Express ; 8: 178, 2018.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15669

RESUMEN

The glycoprotein APA (Alanine- and Proline-rich Antigen, a 45/47 kDa antigen complex, Rv1860) is considered as a major immunodominant antigen secreted by M. tuberculosis. This antigen has proved to be highly immunogenic in experimental models and humans, presenting a significant potential for further development of a new vaccine for tuberculosis. Glycosylation plays a key role in the immunogenicity of the APA protein. Because plants are known to promote post-translational modification such as glycosylation and to be one of the most economic and safe hosts for recombinant protein expression, we have over expressed the APA protein in transgenic tobacco plants aiming to produce a glycosylated version of the protein. Seeds are known to be a well-suited organ to accumulate recombinant proteins, due to low protease activity and higher protein stability. We used a seed-specific promoter from sorghum, a signal peptide to target the protein to the endoplasmic reticulum and ultimately in the protein storage vacuoles. We show that the recombinant protein accumulated in the seeds had similar isoelectric point and molecular weight compared with the native protein. These findings demonstrate the ability of tobacco plants to produce glycosylated APA protein, opening the way for the development of secure, effective and versatile vaccines or therapeutic proteins against tuberculosis.

17.
Front Plant Sci ; 8: 1077, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28690620

RESUMEN

Sugarcane is a unique crop with the ability to accumulate high levels of sugar and is a commercially viable source of biomass for bioelectricity and second-generation bioethanol. Water deficit is the single largest abiotic stress affecting sugarcane productivity and the development of water use efficient and drought tolerant cultivars is an imperative for all major sugarcane producing countries. This review summarizes the physiological and molecular studies on water deficit stress in sugarcane, with the aim to help formulate more effective research strategies for advancing our knowledge on genes and mechanisms underpinning plant response to water stress. We also overview transgenic studies in sugarcane, with an emphasis on the potential strategies to develop superior sugarcane varieties that improve crop productivity in drought-prone environments.

18.
Sci Rep ; 7: 43364, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28266527

RESUMEN

The effects of ethephon as a sugarcane ripener are attributed to ethylene. However, the role of this phytohormone at the molecular level is unknown. We performed a transcriptome analysis combined with the evaluation of sucrose metabolism and hormone profiling of sugarcane plants sprayed with ethephon or aminoethoxyvinylglycine (AVG), an ethylene inhibitor, at the onset of ripening. The differential response between ethephon and AVG on sucrose level and sucrose synthase activity in internodes indicates ethylene as a potential regulator of sink strength. The correlation between hormone levels and transcriptional changes suggests ethylene as a trigger of multiple hormone signal cascades, with approximately 18% of differentially expressed genes involved in hormone biosynthesis, metabolism, signalling, and response. A defence response elicited in leaves favoured salicylic acid over the ethylene/jasmonic acid pathway, while the upper internode was prone to respond to ethylene with strong stimuli on ethylene biosynthesis and signalling genes. Besides, ethylene acted synergistically with abscisic acid, another ripening factor, and antagonistically with gibberellin and auxin. We identified potential ethylene target genes and characterized the hormonal status during ripening, providing insights into the action of ethylene at the site of sucrose accumulation. A molecular model of ethylene interplay with other hormones is proposed.


Asunto(s)
Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Saccharum/efectos de los fármacos , Saccharum/genética , Perfilación de la Expresión Génica , Saccharum/crecimiento & desarrollo , Saccharum/metabolismo , Sacarosa/metabolismo
19.
Vaccine ; 35(12): 1590-1593, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28222997

RESUMEN

Bovine papillomatosis is an infectious disease that is caused by bovine papillomavirus (BPV), which results in important economic losses. However, no BPV vaccines or effective treatment methods are commercially available to date. Moreover, the absence of papillomavirus replication in vitro makes the use of recombinant protein a promising candidate for vaccine formulations. Hence, we developed an integrated study on the L1 capsid protein of BPV-1, obtained from a bacterial expression system, regarding its purification, biosafety, thermostability and immunogenicity. The results indicated an absence of genotoxicity of the purified recombinant L1 protein, ß-sheet prevalence of secondary structure folding, protein stability under high temperatures as well as the presence of capsomeres and VLPs. In addition, preliminary experimental vaccination of calves showed the production of specific antibodies against BPV-1 L1.


Asunto(s)
Papillomavirus Bovino 1/inmunología , Proteínas de la Cápside/inmunología , Enfermedades de los Bovinos/prevención & control , Infecciones por Papillomavirus/veterinaria , Vacunas contra Papillomavirus/inmunología , Animales , Anticuerpos Antivirales/sangre , Papillomavirus Bovino 1/genética , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Bovinos , Infecciones por Papillomavirus/prevención & control , Vacunas contra Papillomavirus/administración & dosificación , Vacunas contra Papillomavirus/genética , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas de Partículas Similares a Virus/química , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/inmunología
20.
Vaccine ; 35(12): 1590-1593, 2017.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15393

RESUMEN

Bovine papillomatosis is an infectious disease that is caused by bovine papillomavirus (BPV), which results in important economic losses. However, no BPV vaccines or effective treatment methods are commercially available to date. Moreover, the absence of papillomavirus replication in vitro makes the use of recombinant protein a promising candidate for vaccine formulations. Hence, we developed an integrated study on the L1 capsid protein of BPV-1, obtained from a bacterial expression system, regarding its purification, biosafety, thermostability and immunogenicity. The results indicated an absence of genotoxicity of the purified recombinant L1 protein, beta-sheet prevalence of secondary structure folding, protein stability under high temperatures as well as the presence of capsomeres and VLPs. In addition, preliminary experimental vaccination of calves showed the production of specific antibodies against BPV-1 L1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...